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Overview

• > 1 Million metric tonne / yr injection

• Quick start up = “Early test” (bridge between pilot scale 

and SECARB’s Plant Barry/Citronelle anthropogenic 

test) 

• Of possible sites, Denbury’s Cranfield field scheduled for 

2008 CO2 injection start was favorable:

– Time to collect pre-injection data before injection

– Build quickly to >1 MMT per year CO2 injection rate (sufficient to 

assure project metrics were met & exceeded)

– Experienced operator in CO2 EOR – low risk of permitting delay: 

early results for RCSP program

– Field abandoned (40 years); pressure recovered and 

equilibrated
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Favorable Characteristics of Cranfield for 

SECARB Early test

• Follow-on 

between Phase II 

and Phase III

• Phase III planned 

in water leg 

downdip of oil 

zone

• Provided RCSP 

experience with 

CO2 EOR, (grew 

in importance)



Less than-ideal characteristics
• CO2 from Jackson Dome (not anthropogenic)

• Field commercial EOR
– operational aspects not under project’s control 

– some data proprietary 

• Research purpose only 
– Designed prior to EPA or international regulations

• Relatively complex geology both deep & near surface

• Modeling reservoir’s injection response complicated 
– by oil presence

– injection and withdrawal complexities – managed…

Simplified by: 
Focus on the DAS - brine only 

Early timing - production & recycle was minimal



Developing the Experiment
• Year-long series of meetings (2007-2008) 

– designed plan 

• Aligned general research objectives
– well locations 

– selected team members 

– budget 

• Designed detailed plans - major components

• Adapted to fast EOR field development 
– NEPA permitting (slow) 

– other timeline issues 
• equipment rental 

• procurement

• cash flow (2009 “cash call”)  



Project objectives
• Connect CO2 plume development with pressure 

response

– in far-field of reservoir (“in-zone”) 

• Above-Zone Monitoring Interval (AZMI) pressure 

response  

– first time in CCS

• Advance understanding of geomechanical

response (deformation, microseismic)

• Advance understanding of 

– risk to groundwater / value of groundwater as a 

monitoring approach

– soil gas methods as a monitoring approach
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Team contributions (2)
• LLNL

– Multiphase geophysics 

– Cross-well EM fielding 
and interpretation

• USGS 

– reservoir fluid sampling 
& analyses

• Schlumberger Carbon 
Services 

– well logging 

– Cross well Seismic

– AZMI fluid collection

• LBNL  / NRAP 

– U-tube, 

– 3-D VSP 

– downhole fiber optic 
CASSM

• Oak Ridge NL  

– PFT and sampling

• University Edinburgh 

– Noble gasses

• Local landowners

– access

• Walden Consulting

– NEPA



DAS Monitoring Site
Injector

CFU 31F1

Obs 

CFU 31 F2

Obs 

CFU 31 F3

Above-zone

monitoringF1 F2 F3

Injection Zone

Above Zone Monitoring

10,500 feet BSL

Closely 

spaced well 

array to 

examine flow 

in complex 

reservoir

68m

112 m
Petrel model Tip Meckel



Initial CO2 Breakthrough in F2 Initial CO2 Breakthrough in F3





After Work-

over in 9/2010



Contributions: Support Collaborators

• CFSES 

– rock samples  for geomechanics

• NRAP 

– field site for 3D-VSP

• SIM SEQ 

– comparative modeling data set

• NETL 

– CO2 EOR model data



Accomplishments 
• Monitored CO2 injection 2008 – 2015 

• Injection through 23 wells, cumulative 

volume over 8 million metric tons

• First US test of ERT for GS (deepest) 

• Time lapse plume imaging with cross well 

seismic, VSP, RST, & surface 3-D seismic

• RITE microseismic – none detected

• Groundwater sensitivity assessment (push-

pull) 

• Recognized by Carbon Sequestration 

Leadership Forum (CSLF) in 2010 for 

research contributions

• SIM-Seq inter-partnership model 

development test

• Knowledge sharing to Anthropogenic Test 

and other U.S./International CCS projects
18



“Early Test’s” Major Contributions

• Large volume injection bridged RCSP to current 

& future anthropogenic sources

• Value of AZMI pressure monitoring in 

demonstrating reservoir fluid retention 

• Probabilistic monitoring helps history-match fluid 

response to injection in a complex reservoir

• Process-based soil gas method developed and 

demonstrated for the first time

• Demonstrated utility and site-specific limitations 

of groundwater monitoring



Ongoing (1)
• Model additional scenarios 

incorporating uncertainties

• Forward-model seismic response 

• Compare Cranfield ERT to Ketzin

• Evaluate ERT for long-term viability 
(distinguish noise from signal)

• Determine time-dependent capacity 
through modeling 

• Participate in ISO 265 

• Further optimize process-based soil-gas 
method

• Further optimize groundwater uncertainties 



Ongoing (2)

• Technology transfer

– Deployment of monitoring strategies 

developed at SECARB “Early” test as well as 

other RCSP and international CCUS sites

– Support for maturation of monitoring for EOR 

as well as saline sites through international 

standards, best practices, critical reviews



Cranfield NE 

section model

• Compositional simulation

• Total number of block = 

82,500

• CO2 distribution:
• Super critical phase: ?%

• Dissolved in oil: ?%

• Dissolved in brine: ?%



Injection-Production data

• Available injection/production 
data:

– Oil, gas, and water production 
rates

– CO2 injection rate

• Well constraints:
• CO2 injection rate, Oil production rate

• History match :
• Gas and water production rates, 

breakthrough times

Production rate Injection rate
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Results and future plans

• CO2 distribution (2012):

• Super critical phase: 56%

• Dissolved in oil: 26%

• Dissolved in brine: 18%

• Running extended 
simulations and scenarios

• Compare with 4D seismic

2010 2012



Optimizing and Upscaling 
Process-Based 

Monitoring Technology 



Understanding Complex Environments 



Testing and 

Developing 

Sensing 

Capabilities 

• Continuous  

• Real-time  

• Smart



Current Method Shortfalls

• Requires a manned gas chromatograph (GC) 

• Time- and labor-intensive

• Requires consumable supplies

• No continuous real-time data



“User-Friendly” for Public Engagement
• Instant data reduction

• Reduces risk of false positives.

• Graphical analysis 

• Continuous monitoring capability will give instant real-time leakage 

detection information. 
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O2 vs. CO2

 Indicates natural processes 

that affect CO2

concentrations 

 Distinguishes among 

respiration, CH4 oxidation 

and dissolution

 Gives an initial assessment 

of leakage

Process-Based Gas Ratio - 1

Leakage



Process-Based Gas Ratio - 2

CO2 vs. N2

 Identifies whether gas 

has migrated from 

depth. 

 Indicates whether CO2

is being added 

through leakage or 

lost through 

dissolution.


